
Automating ICU4X’s Web Demo from Foreign
Function Interface Definitions

Tyler Knowlton (ambiguousname@ambiguous.name)

Abstract
ICU4X’s WASM bindings provide a powerful tool for designers and

developers to create hassle-free localization for software. To encourage
greater adoption, online playgrounds are always the first step in demon-
strating versatility and flexibility. For these purposes, this proposal ex-
plores automating ICU4X’s online WASM demo through pre-existing FFI
definitions.

Background
ICU4X marks FFI definitions for Rust Diplomat, which allows use across nearly
any conceivable language. This includes WebAssembly, which makes the creation
of a web demonstration for ICU4X’s capabilities remarkably easy: https://unic
ode-org.github.io/icu4x/wasm-demo/index.html.

Of course, a hand-written demo does not allow for easy scaling. The nice thing
about an FFI definition, however, is the ability to see each possible function that
could be called. From those definitions, we can generate examples for use.

Take for instance, fixed-decimal.ts. It makes use of several FFIs, the main
two being: ICU4XFixedDecimalFormatter.create_with_grouping_strategy,
which creates a formatter that allows us to call format(ICU4XFixedDecimal).
There is nothing that prevents an enterprising developer from opening the
browser console and running these functions themselves. However, a UI does far
more to visually demonstrate the possibilities in using such functions.

Creating UI from FFI definition
In the simplest version of an automatic demonstration, we would:

First, identify ICU4XFixedDecimalFormatter.format from the FFI definition.
We know that this function has a visual component that would be great to
showcase to an end user interested in testing ICU4X.

From there, we look at the function definition:

1

mailto:ambiguousname@ambiguous.name
https://unicode-org.github.io/icu4x/wasm-demo/index.html
https://unicode-org.github.io/icu4x/wasm-demo/index.html


/// Formats a [`ICU4XFixedDecimal`] to a string.
#[diplomat::rust_link(

icu::decimal::FixedDecimalFormatter::format, FnInStruct
)]
#[diplomat::rust_link(

icu::decimal::FixedDecimalFormatter::format_to_string,
FnInStruct,
hidden

)]
#[diplomat::rust_link(

icu::decimal::FormattedFixedDecimal, Struct, hidden)
]
#[diplomat::rust_link(

icu::decimal::FormattedFixedDecimal::write_to,
FnInStruct,
hidden

)]
pub fn format(

&self,
value: &ICU4XFixedDecimal,
write: &mut diplomat_runtime::DiplomatWriteable,

) -> Result<(), ICU4XError> {
self.0.format(&value.0).write_to(write)?;
Ok(())

}

Looking at the definition, .format requires a reference to &self, and a value
&ICU4XFixedDecimal.

For simplicity’s sake, let’s say we find constructors for both. There are
further chains of dependencies. Some should be pre-constructed, such as
ICU4XDataProivder. We take note of every dependency and how it fits into
user experience. There are some dependencies which require user input, such as
ICU4XFixedDecimalGroupingStrategy, which is an enumerator that can be
set in the formatter’s constructor. Now we have a chain of dependencies and
their requirements for use. Some can be constructed in initialization, and some
before user input.

Finally, we construct the UI. We noted ICU4XFixedDecimal as a required
input, so we make sure to show a text field for that. We also noted
ICU4XFixedDecimalGroupingStrategy as an option for enums, and so we show
a dropdown to select these values. We select a default value if the userdoesn’t
wish to touch it.

All of the behind-the-scenes dependencies and front-facing UI are combined to
make an automatically generated webpage for a user to play with. We repeat
this process for multiple functions that can be visually represented to the user.

2



We can create a dropdown or selector to allow easy switching between these
visual demos.

This is a human-readable process for creating such a system. Details on how these
steps might be accomplished in a more machine-friendly manner are expanded
on in Deliverables.

3



Benefits
Being able to define such a system for automatically creating user interfaces
from Rust code has tremendous benefit.

For one, a demo page provides a great way for potential users of ICU4X to
immediately see the possibilities in its use. Reluctant users would be able to
quickly resolve doubts in seeing the system in action.

For two, an automatic system that requires minimal tweaking leaves room for
developers to expand on features without worrying themselves over issues like
UI design or accessibility. They would simply need to ensure that whatever
authored features are visible to the system for use.

4



Deliverables
For this project, I propose:

0. A complete detailing of the specifications and systems outlined below.
a. I expect to diagram the interacting components and their setup for a

working proof of concept.
b. This will take some further investigation to test and throughly examine

potential setups, and I estimate a few weeks before it’s complete.
1. A re-write of the ICU4X WASM Demo to be automatically generated. Per

the example in Background, this requires:
a. A system for selecting functions, structures, and enumerators to

include in the Automatic Demo as visual elements. Additionally,
this system would identify dependencies for each visual elements and
construction methods for these dependencies.

i. Most of this system should be automatic, but some user definition
will be required to identify features that the FFI does not define.
Which functions can be represented visually, for instance.

ii. I propose writing the majority of this component in Rust, in a
fashion very similar to Rust-Diplomat (it could work very easily
as a frontend). Adding Rust attributes to FFI items during
development, then running a tool to parse the FFI definition AST
and generate the requisite WebAssembly for creating UI from
FFI definitions.

iii. Writing this system will most likely take the largest chunk of
project time, as designing specifications for how to parse an AST
with user experience in mind can get complicated very quickly.

b. Adapting the existing HTML boilerplate to allow for automatic gen-
eration.

i. This mostly involves continued use of the already in-place depen-
dencies: Webpack, Typescript, SCSS, etc.

ii. It would just need to ensure compatibility with the automatically
generated WebAssembly.

2. An expansion of the ICU4X WASM Demo to include functions beyond
those included in the demo.

a. With the demo re-written to use an automatic system, the next logical
step would be expanding to provide the full breadth of features ICU4X
has available.

b. This will most likely include adding attributes to various FFI defini-
tions.

c. This may also require re-writing the AST parser to accommodate a
greater breadth of demo options that the full ICU4X FFI definition
provides.

5



Stretch Goals
1. A re-designed UI.

a. With expanded example function calls, the UI may require a more
efficient way to search and find relevant examples.

b. A statement explaining the goals of the project and its uses would also
help new users orient themselves in exploring ICU4X’s possibilities.

c. Example code sidebar
i. A sidebar on the webpage which shows how a user could re-create

the current FFI selection in the language of their choice.
ii. In accordance with the benefits described in Benefits, users should

be able to see how ICU4X could work practically for them.
2. Dynamically loading language packs as needed.

a. Speed is always an important factor when it comes to web interfaces,
so being able to load in ICU4X’s language packs as needed leads to
a faster experience overall, and greater accessibility for users with
slower internet connections.

6



Author Experience
Hi, I’m Tyler! I go by ambiguousname on the internet. I’m a senior at University
of California, Santa Cruz. I’ll be graduating June 2024 with a B.S. in Computer
Science: Game Design, and next year I’ll be pursuing a M.S. in Applied Mathe-
matics, most likely also at UC Santa Cruz (I’m still in the process of getting
responses from grad schools). I have a lot of experience in making tools on
the web, and from that comes a whole lot more experience in processing data.
There’s a lot of different formats in how the web likes to communicate, and I’m
pretty good at digging through documentation to learn how the pieces shoudl fit
together.

Some selected projects:

• For Rust experience, I’m in the process of re-writing a mod tool I wrote 2
years ago GTK4: https://github.com/ambiguousname/jackbox-custom-
content/tree/rust-refactor

• For WebAssembly experience: https://ambiguous.name/2024/02/28/wa
sm.html

• For HTML/Javascript/Web experience, I wrote a framework for automati-
cally playing a series of HTML games back to back: https://ambiguous.na
me/2024/01/31/microgame-jam-2022.html

• For making build scripts for automatic HTML page generation, I wrote a
Python script that parsed HTML pages into C++ here: https://github.c
om/ambiguousname/spider-880

• For working with others, I lead a club on-campus in developing games as a
team: https://www.gdacollab.com/about-us/. My official title is Chief
Operating Officer.

– I work as a sort of manager of managers, helping officers communicate
and tracking important deadlines for us to follow.

I hope this proposal nicely illustrates a dynamic way to construct webpages
using ICU4X’s existing tools. I look forward to your review, and I thank you for
your time.

I hopefully look forward to working with you in the future!

7

https://ambiguous.name/
https://github.com/ambiguousname/jackbox-custom-content/tree/rust-refactor
https://github.com/ambiguousname/jackbox-custom-content/tree/rust-refactor
https://ambiguous.name/2024/02/28/wasm.html
https://ambiguous.name/2024/02/28/wasm.html
https://ambiguous.name/2024/01/31/microgame-jam-2022.html
https://ambiguous.name/2024/01/31/microgame-jam-2022.html
https://github.com/ambiguousname/spider-880
https://github.com/ambiguousname/spider-880
https://www.gdacollab.com/about-us/

	Background
	Creating UI from FFI definition

	Benefits
	Deliverables
	Stretch Goals

	Author Experience

